

DATA SHEET

Product Name Industrial Grade Thick Film Chip Resistor

Part Name CM Series File No. SMD-SP-041

Uniroyal Electronics Global Co., Ltd.

88#, Longteng Road, Economic & Technical Development Zone, Kunshan, Jiangsu, China

Tel +86 512 5763 1411 / 22 /33

Email marketing@uni-royal.cn

Manufacture Plant Uniroyal Electronics Industry Co., Ltd.

Aeon Technology Corporation

Royal Electronic Factory (Thailand) Co., Ltd.

Royal Technology (Thailand) Co., Ltd.

- 1.1 This datasheet is the characteristics of Industrial Grade Thick Film Chip Resistor manufactured by UNI-ROYAL.
- 1.1 Application Kinds of industrial control devices &industrial supplies

2. Part No. System

Part No. includes 14 codes shown as below:

2.1 1st~4th codes: Part name. E.g.: CM01,CM02,CM03,CM05,CM06,CM07,CM10,CM12

2.2 5th~6th codes: Power rating.

E.g.: W=Normal S	ize	"1~	G" = "1~1	6"				
Wattage	3/4	1/2	1/4	1/8	1/10	1/16	1/20	1
Normal Size	07	W2	W4	W8	WA	WG	WM	1W

If power rating is equal or lower than 1 watt, 5th code would be "W" and 6th code would be a number or letter.

E.g.: WA=1/10W

W4=1/4W2.3 7th code: Tolerance. E.g.: F=±1% J=±5%

2.4 8th~11th codes: Resistance Value.

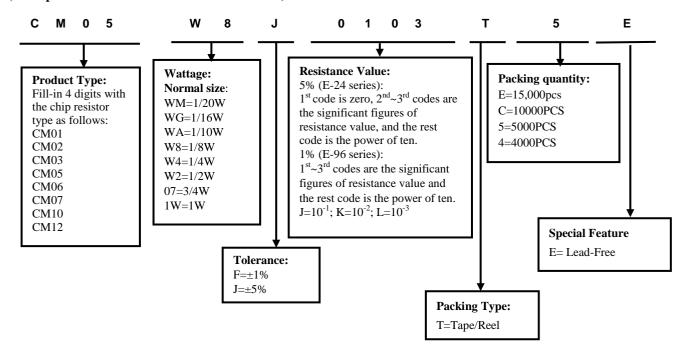
- 2.4.1 If value belongs to standard value of E-24 series, the 8th code is zero, 9th~10th codes are the significant figures of resistance value, and the 11th code is the power of ten.
- 2.4.2 If value belongs to standard value of E-96 series, the 8th~10th codes are the significant figures of resistance value, and the 11th code is the power of ten.
- 2.4.311th codes listed as following:

 $0=10^0$ $1=10^1$ $2=10^{2}$ $4=10^{4}$ $5=10^5$ $6=10^6$ $J=10^{-1}$ $K=10^{-2}$ $L=10^{-3}$ $M=10^{-4}$ $3=10^3$

2.5 12th~14th codes.

2.5.1 12th code: Packaging Type. E.g.: T=Tape/Reel

2.5.2 13th code: Standard Packing Quantity.


5=5,000pcs 4=4,000pcsC=10,000pcs D=20,000pcs E=15,000pcs

2.5.3 14th code: Special features.

E = Environmental Protection, Lead Free, or Standard type.

3. Ordering Procedure

(Example: CM05 1/8W \pm 5% 10K Ω T/R-5000)

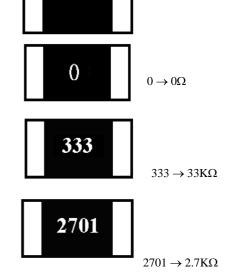
4. Marking

4.1 Normally, the marking of CM01,CM02 resistors as following

4.2 Normally, the marking of 0Ω CM03, 0Ω CM05, 0Ω CM06, 0Ω CM07, 0Ω CM10, 0Ω CM12, resistors as following

 $4.3 \pm 5\%$ tolerance products (E-24 series):

3 codes.


1st~2nd codes are the significant figures of resistance value, and the rest code is the power of ten.

 $4.4 \pm 1\%$ tolerance products (E-96 series):

4 codes.

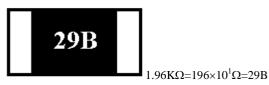
 $1^{st} \sim 3^{rd}$ codes are the significant figures of resistance value, and the rest code is the power of ten.

Letter "R" in mark means decimal point.

4.5 Standard E-96 series values of 0603 ≤1%: due to the small size of the resistor's body, 3 digits marking will be used to indicate the accurate resistance value by using the following multiplier & resistance code.

Multiplier Code (for 0603 ≤±1% marking)

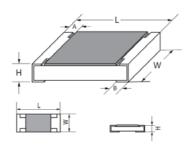
Code	A	В	C	D	E	F	G	Н	X	Y	Z
Multiplier	10^{0}	10 ¹	10^{2}	10^{3}	10 ⁴	10 ⁵	10^{6}	10^{7}	10-1	10-2	10-3


Standard E-96 series Resistance Value code (for 0603≤±1% marking)

Value	Code	Value	Code	Value	Code	Value	Code
100	01	178	25	316	49	562	73
102	02	182	26	324	50	576	74
105	03	187	27	332	51	590	75
107	04	191	28	340	52	604	76
110	05	196	29	348	53	619	77
113	06	200	30	357	54	634	78
115	07	205	31	365	55	649	79
118	08	210	32	374	56	665	80
121	09	215	33	383	57	681	81
124	10	221	34	392	58	698	82
127	11	226	35	402	59	715	83
130	12	232	36	412	60	732	84
133	13	237	37	422	61	750	85
137	14	243	38	432	62	768	86
140	15	249	39	442	63	787	87
143	16	255	40	453	64	806	88
147	17	261	41	464	65	825	89
150	18	267	42	475	66	845	90
154	19	274	43	487	67	866	91
158	20	280	44	499	68	887	92
162	21	287	45	511	69	909	93
165	22	294	46	523	70	931	94
169	23	301	47	536	71	953	95
174	24	309	48	549	72	976	96

So the resistance value are marked as the following examples

4.6 Standard E-24 and not belong to E-96 series values ($\leq \pm 1\%$) of 0603 size: the marking is the same as 5% tolerance but marking as underline.


<u>333</u>=33ΚΩ

 $680 = 68\Omega$

5. <u>Dimension</u>

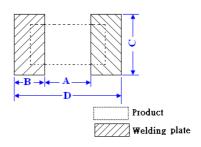
TD.					
Туре	L	W	Н	A	В
CM01(0201)	0.60 ± 0.03	0.30 ± 0.03	0.23±0.03	0.12±0.05	0.15±0.05
CM02(0402)	1.00±0.10	0.50 ± 0.05	0.35 ± 0.05	0.20 ± 0.10	0.25±0.10
CM03(0603)	1.60±0.10	0.80 ± 0.10	0.45±0.10	0.30±0.20	0.30±0.20
CM05(0805)	2.00±0.15	1.25 +0.15/-0.10	0.55±0.10	0.40 ± 0.20	0.40±0.20
CM06(1206)	3.10±0.15	1.55+0.15/-0.10	0.55±0.10	0.45±0.20	0.45±0.20
CM07(1210)	3.10±0.10	2.60±0.20	0.55±0.10	0.50±0.25	0.50±0.20
CM10(2010)	5.00±0.10	2.50±0.20	0.55±0.10	0.60±0.25	0.50±0.20
CM12(2512)	6.35±0.10	3.20±0.20	0.55±0.10	0.60 ± 0.25	0.50±0.20

6. Resistance Range and Temperature Coefficient

T.	D. D. d	Resistance Range				
Type	Power Rating	$\pm 1.0\%$	±5.0%			
CM01	1/20W	1Ω-10ΜΩ	1Ω-10ΜΩ			
CM02	1/16W	1Ω-10ΜΩ	1Ω-10ΜΩ			
CM03	1/10W	1Ω - 10 M Ω	1Ω-10ΜΩ			
CM05	1/8W	1Ω - 10 M Ω	1Ω-10ΜΩ			
CM06	1/4W	1Ω - $10M\Omega$	1Ω-10ΜΩ			
CM07	1/2W	1Ω - 10 M Ω	1Ω-10ΜΩ			
CM10	3/4W	1Ω-10ΜΩ	1Ω-10ΜΩ			
CM12	1W	1Ω-10ΜΩ	1Ω-10ΜΩ			

7. Ratings

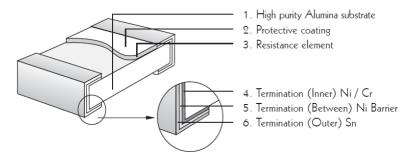
Туре	Max. Working Voltage	Max. Overload Voltage	Dielectric withstanding Voltage	Resistance Value of Jumper	Rated Current of Jumper	Max. Overload Current of Jumper	Operating Temperature
CM01	25V	50V	/	$<$ 50m Ω	0.5A	1A	-55℃~155℃
CM02	50V	100V	100V	$<$ 50m Ω	1A	2A	-55℃~155℃
CM03	75V	150V	300V	<50mΩ	1A	2A	-55℃~155℃
CM05	150V	300V	500V	<50mΩ	2A	5A	-55℃~155℃
CM06	200V	400V	500V	$<$ 50m Ω	2A	10A	-55℃~155℃
CM07	200V	500V	500V	<50mΩ	2A	10A	-55℃~155℃
CM10	200V	500V	500V	<50mΩ	2A	10A	-55℃~155℃
CM12	200V	500V	500V	<50mΩ	2A	10A	-55℃~155℃



8. Soldering pad size recommended

Trmo		Dimension(mm)								
Type	A	В	C	D						
CM01	0.3 ± 0.05	0.35 ± 0.05	0.4 ± 0.05	1.0±0.05						
CM02	0.50 ± 0.05	0.45 ± 0.05	0.5 ± 0.05	1.4±0.05						
CM03	0.8 ± 0.05	0.65 ± 0.05	0.8 ± 0.05	2.1±0.05						
CM05	1.0±0.1	1.0±0.1	1.3±0.1	3.0±0.1						
CM06	2.0±0.1	1.1 ± 0.1	1.6±0.1	4.2±0.1						
CM07	2.0±0.1	1.1±0.1	2.6±0.1	4.2±0.1						
CM10	3.6±0.1	1.3±0.1	2.6±0.1	6.2±0.1						
CM12	4.9±0.1	1.6±0.1	3.3±0.1	8.1±0.1						

9. Derating Curve


Power rating will change based on continuous load at ambient temperature from -55 to 155 $^{\circ}$ C. It is constant between -55 to 70 $^{\circ}$ C, and derate to zero when temperature rise from 70 to 155 $^{\circ}$ C. Voltage rating:

Resistors shall have a rated direct-current (DC) continuous working voltage or an approximate sine-wave root-mean-square (RMS) alternating-current (AC) continuous working voltage at commercial-line frequency and waveform corresponding to the power rating, as determined from the following formula:

$$RCWV = \sqrt{P \times R}$$

Remark: RCWV: Rating Continuous Working Voltage (Volt.) P: power rating (Watt) R: nominal resistance (Ω) In no case shall the rated DC or RMS AC continuous working voltage be greater than the applicable maximum value. The overload voltage is 2.5 times RCWV or Max. Overload voltage whichever is lower.

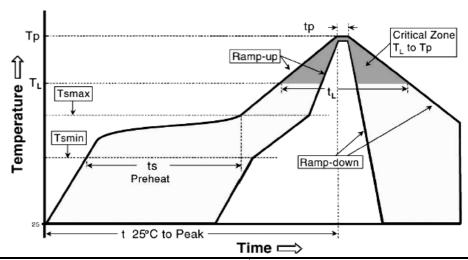
10. Structure

11. Performance Specification

Characteristic	Limits	Test Methods (GB/T 5729&JIS-C-5201&IEC60115-1)			
©Temperature Coefficient	CM01: 1Ω≤R≤10Ω: -100~ + 350PPM/°C >10Ω: ±200PPM/°C CM02~CM12: 1Ω≤R≤10Ω: ±200PPM/°C >10Ω: ±100PPM/°C	$ \begin{array}{c} 4.8 \text{ Natural resistance changes per temp. Degree centigrade} \\ \hline \frac{R_2 \text{-}R_1}{R_1 \text{-}} \times 10^6 \text{(PPM/°C)} \\ \hline R_1 \text{(}t_2 \text{-}t_1 \text{)} \\ \hline R_1 \text{: Resistance Value at room temperature } \text{(}t_1 \text{) ;} \\ \hline R_2 \text{: Resistance at test temperature } \text{(}t_2 \text{)} \\ \hline t_{1:} +25 ^{\circ}\text{C or specified room temperature} \\ \hline t_2 \text{: Test temperature } \text{(}-55 ^{\circ}\text{C or } 125 ^{\circ}\text{C)} \\ \hline \end{array} $			
© *Short-time	±1%: ±(1.0%+0.05Ω)	4.13 Permanent resistance change after the application of a potential of 2.5 times RCWV or Max. Overload Voltage whichever less for 5 seconds			
overload	$\pm 5\%$: $\pm (2.0\% + 0.05\Omega)$				
overioud	* <50mΩ	Apply max Overload current for 0Ω			
* Dielectric withstanding voltage	No evidence of flashover mechanical damage, arcing or insulation breaks down.	4.7 Resistors shall be clamped in the trough of a 90°C metallic v-block and shall be tested at ac potential respectively specified in the given list of each product type for 60-70 seconds.			
© *Solderability	Coverage must be over 95%.	4.17 The area covered with a new, smooth, clean, shiny and continuous surface free from concentrated pinholes. Temperature of solder:245±3°C; Dwell time in solder: 2~3 seconds.			

© Rapid change of	±1%: ±(0.5%+0.05Ω)	4.10.20 4.55.00 4.15500 1
temperature	±5%: ±(1.0%+0.05Ω)	4.19 30 min at -55 °C and 30 min at 155°C; 100 cycles.
© Soldering heat	±(1.0%+0.05Ω)	4.18 Dip the resistor into a solder bath having a temperature of 260 °C±5 °C and hold it for 10±1 seconds.
Terminal bending	±(1.0%+0.05Ω)	4.33 Twist of test board: Y/X = 3/90 mm for 60Seconds
* Insulation resistance	≥1,000 MΩ	4.6 The measuring voltage shall be ,measured with a direct voltage of $(100\pm15)V$ or a voltage equal to the dielectric withstanding voltage., and apply for 1 min.
© Humidity	±1%: ±(0.5%+0.05Ω)	4.24Temporary resistance change after 240 hours exposure in a humidity test chamber controlled at 40±2°C and 90-95% relative
(steady state)	±5%: ±(3.0%+0.05Ω)	humidity lest chamber controlled at 40 ± 2 C and $90-95\%$ relative
	±1%: ±(1.0%+0.05Ω)	7.9 Resistance change after 1000 hours (1.5hours "ON", 0.5hours "OFF") at RCWV or Max. Working Voltage whichever
*Load life in humidity	±5%: ±(3.0%+0.05Ω)	less in a humidity test chamber controlled at 40±2°C and 93%±3% RH.
	* <50mΩ	Apply to rated current for 0Ω
© *Load life	$\pm 1\%$: $\pm (1.0\% + 0.05\Omega)$ $\pm 5\%$: $\pm (3.0\% + 0.05\Omega)$	4.25.1 Permanent Resistance change after 1000 hours operating at RCWV or Max.Working Voltage whichever less with duty cycle of 1.5 hours "ON" , 0.5 hour "OFF" at 70±2°C ambient.
	* <50m Ω	Apply to rated current for 0Ω
©*Low	$\pm 1\%$: $\pm (1.0\% + 0.05\Omega)$	
Temperature	$\pm 5\%$: $\pm (3.0\% + 0.05\Omega)$	IEC 60068-2-1 (Aa) Lower limit temperature, for 2H.
Storage	* <50mΩ	Lower milit temperature 101 211.
© *High	$\pm 1\%$: $\pm (1.0\% + 0.05\Omega)$	MH 0772 202 100 A
Temperature	$\pm 5\%$: $\pm (3.0\% + 0.05\Omega)$	MIL-STD-202 108A Upper limit temperature , for 1000H.
Exposure	* $<$ 50m Ω for 0 Ω	
© *Leaching	No visible damage	J-STD-002 Test D Samples completely immersed for 30 sec in solder bath at 260 °C.
Sulfuration test	±(1.0%+0.05Ω)	MIL-STD-202 Method 210 sulfur(saturated vapor) Temperature: 50±2°C
Sulfuration test	* $<$ 50m Ω for 0 Ω	Humidity: 86 ~ 90%RH, Test time: 1000H.

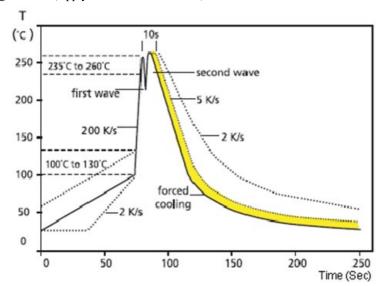
The resistors of 0Ω only can do the characteristic noted of *



11. Soldering Condition

(This is for recommendation, please customer perform adjustment according to actual application)

11.1 Recommend Reflow Soldering Profile: (solder: Sn96.5 / Ag3 / Cu0.5)

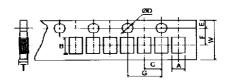


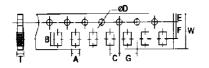
Profile Feature	Lead (Pb)-Free solder
Preheat:	
Temperature Min (Ts _{min})	150℃
Temperature Max (Ts _{max})	200°C
Time (Ts_{min} to Ts_{max}) (ts)	60 -120seconds
Average ramp-up rate: (Ts max to Tp)	3°C / second max.
Time maintained above :	217°C 60-150 seconds
Peak Temperature (Tp)	260℃
Time within $^{+0}_{-5}^{\circ}$ C of actual peak Temperature (tp) ²	10 seconds
Ramp-down Rate	6°C/second max.
Time 25°C to Peak Temperature	8minutes max.

Allowed Re-flow times: 2 times

 $Remark: To \ avoid \ discoloration \ phenomena \ of \ chip \ on \ terminal \ electrodes, \ please \ use \ N_2 \ Re-flow \ furnace \ .$

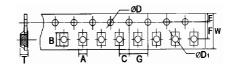
11.2 Recommend Wave Soldering Profile: (Apply to 0603 and above size)



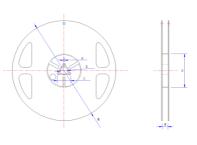

12. Packing

12.1 Dimension of Paper Taping: (Unit: mm)

Type	A	В	C ±0.05	$\Phi D_{-0}^{+0.1}$	E ±0.1	F ±0.05	G ±0.1	W ±0.2	Т
CM01	0.40±0.05	0.70±0.05	2.00	1.50	1.75	3.50	4.00	8.00	0.42±0.1
CM02	0.65±0.1	1.20±0.1	2.00	1.50	1.75	3.50	4.00	8.00	0.42±0.05



Т	A	В	C $\Phi D_{-0}^{+0.1}$	Е	F	G	W	T	
Туре	± 0.2 ± 0.2 ± 0.05	$\Phi D_{=0}$	±0.1	±0.05	±0.1	±0.2	±0.1		
CM03	1.10	1.90	2.00	1.50	1.75	3.50	4.00	8.00	0.67
CM05	1.65	2.40	2.00	1.50	1.75	3.50	4.00	8.00	0.81
CM06	2.00	3.60	2.00	1.50	1.75	3.50	4.00	8.00	0.81
CM07	2.80	3.50	2.00	1.50	1.75	3.50	4.00	8.00	0.75


12.2 Dimension of plastic taping: (Unit: mm)

Туре	A	В	C	ΦD ^{+0.1}	ФD1 ^{+0.25}	Е	F	G	W	T
	±0.2	±0.2	±0.05			±0.1	±0.05	±0.1	±0.2	±0.1
CM10	2.90	5.60	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00
CM12	3.50	6.70	2.00	1.50	1.50	1.75	5.50	4.00	12.00	1.00

12.3 Dimension of Reel: (Unit: mm)

Type	Qty/Reel	A±0.5	B±0.5	C±0.5	D±1	M±2	W±1
CM01	15,000pcs	2.0	13.0	21.0	60.0	178	10
CM02	10,000pcs	2.0	13.0	21.0	60.0	178	10
CM03	5,000pcs	2.0	13.0	21.0	60.0	178	10
CM05	5,000pcs	2.0	13.0	21.0	60.0	178	10
CM06	5,000pcs	2.0	13.0	21.0	60.0	178	10
CM07	5,000pcs	2.0	13.0	21.0	60.0	178	10
CM10	4,000pcs	2.0	13.0	21.0	60.0	178	13.8
CM12	4,000pcs	2.0	13.0	21.0	60.0	178	13.8

13. <u>Note</u>

13.1. UNI-ROYAL recommend products store in warehouse with temperature between 15 to $35\,^{\circ}$ C under humidity between 25 to 75% RH.

Even under storage conditions recommended above, solder ability of products will be degraded stored over 1 year old.

- 13.2. Cartons must be placed in correct direction which indicated on carton, otherwise the reel or wire will be deformed.
- 13.3. Storage conditions as below are inappropriate:
 - a. Stored in high electrostatic environment
 - b. Stored in direct sunshine, rain, snow or condensation.

14. Record

Version	Description	Page	Date	Amended by	Checked by
1	First version	1~8	Dec.18, 2023	Song Nie	Haiyan Chen

© Uniroyal Electronics Global Co., Ltd. All rights reserved. Specification herein will be changed at any time without prior notice